Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Theranostics ; 14(6): 2442-2463, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646654

RESUMEN

Rationale: Resistance to targeted therapies like trastuzumab remains a critical challenge for HER2-positive breast cancer patients. Despite the progress of several N-terminal HSP90 inhibitors in clinical trials, none have achieved approval for clinical use, primarily due to issues such as induction of the heat shock response (HSR), off-target effects, and unfavorable toxicity profiles. We sought to examine the effects of HVH-2930, a novel C-terminal HSP90 inhibitor, in overcoming trastuzumab resistance. Methods: The effect of HVH-2930 on trastuzumab-sensitive and -resistant cell lines in vitro was evaluated in terms of cell viability, expression of HSP90 client proteins, and impact on cancer stem cells. An in vivo model with trastuzumab-resistant JIMT-1 cells was used to examine the efficacy and toxicity of HVH-2930. Results: HVH-2930 was rationally designed to fit into the ATP-binding pocket interface cavity of the hHSP90 homodimer in the C-terminal domain of HSP90, stabilizing its open conformation and hindering ATP binding. HVH-2930 induces apoptosis without inducing the HSR but by specifically suppressing the HER2 signaling pathway. This occurs with the downregulation of HER2/p95HER2 and disruption of HER2 family member heterodimerization. Attenuation of cancer stem cell (CSC)-like properties was associated with the downregulation of stemness factors such as ALDH1, CD44, Nanog and Oct4. Furthermore, HVH-2930 administration inhibited angiogenesis and tumor growth in trastuzumab-resistant xenograft mice. A synergistic effect was observed when combining HVH-2930 and paclitaxel in JIMT-1 xenografts. Conclusion: Our findings highlight the potent efficacy of HVH-2930 in overcoming trastuzumab resistance in HER2-positive breast cancer. Further investigation is warranted to fully establish its therapeutic potential.


Asunto(s)
Neoplasias de la Mama , Resistencia a Antineoplásicos , Proteínas HSP90 de Choque Térmico , Receptor ErbB-2 , Trastuzumab , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Animales , Femenino , Receptor ErbB-2/metabolismo , Receptor ErbB-2/antagonistas & inhibidores , Línea Celular Tumoral , Ratones , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Ratones Desnudos , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología
2.
Toxics ; 11(7)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37505560

RESUMEN

Industrial wastewater often consists of toxic chemicals and pollutants, which are extremely harmful to the environment. Heavy metals are toxic chemicals and considered one of the major hazards to the aquatic ecosystem. Analytical techniques, such as potentiometric methods, are some of the methods to detect heavy metals in wastewaters. In this work, the quantitative structure-property relationship (QSPR) was applied using a range of machine learning techniques to predict the stability constant (logßML) and potentiometric sensitivity (PSML) of 200 ligands in complexes with the heavy metal ions Cu2+, Cd2+, and Pb2+. In result, the logßML models developed for four ions showed good performance with square correlation coefficients (R2) ranging from 0.80 to 1.00 for the training and 0.72 to 0.85 for the test sets. Likewise, the PSML displayed acceptable performance with an R2 of 0.87 to 1.00 for the training and 0.73 to 0.95 for the test sets. By screening a virtual database of coumarin-like structures, several new ligands bearing the coumarin moiety were identified. Three of them, namely NEW02, NEW03, and NEW07, showed very good sensitivity and stability in the metal complexes. Subsequent quantum-chemical calculations, as well as physicochemical/toxicological profiling were performed to investigate their metal-binding ability and developability of the designed sensors. Finally, synthesis schemes are proposed to obtain these three ligands with major efficiency from simple resources. The three coumarins designed clearly demonstrated capability to be suitable as good florescent chemosensors towards heavy metals. Overall, the computational methods applied in this study showed a very good performance as useful tools for designing novel fluorescent probes and assessing their sensing abilities.

3.
Oncogene ; 41(23): 3289-3297, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35501463

RESUMEN

Despite recent advances, there remains a significant unmet need for the development of new targeted therapies for triple-negative breast cancer (TNBC). Although the heat shock protein HSP90 is a promising target, previous inhibitors have had issues during development including undesirable induction of the heat shock response (HSR) and off-target effects leading to toxicity. SL-145 is a novel, rationally-designed C-terminal HSP90 inhibitor that induces apoptosis in TNBC cells via the suppression of oncogenic AKT, MEK/ERK, and JAK2/STAT3 signaling and does not trigger the HSR, in contrast to other inhibitors. In an orthotopic allograft model incorporating breast cancer stem cell-enriched TNBC tumors, SL-145 potently suppressed tumor growth, angiogenesis, and metastases concomitant with dysregulation of the JAK2/STAT3 signaling pathway. Our findings highlight the potential of SL-145 in suppressing metastatic TNBC independent of the HSR.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Proteínas HSP90 de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Humanos , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Theranostics ; 12(1): 105-125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34987637

RESUMEN

Rationale: The heat shock protein (Hsp) system plays important roles in cancer stem cell (CSC) and non-CSC populations. However, limited efficacy due to drug resistance and toxicity are obstacles to clinical use of Hsp90 inhibitors, suggesting the necessity to develop novel Hsp90 inhibitors overcoming these limitations. Methods: The underlying mechanism of resistance to Hsp90 inhibitors was investigated by colony formation assay, sphere formation assay, western blot analysis, and real-time PCR. To develop anticancer Hsp90 inhibitors that overcome the signal transducer and activator of transcription 3 (STAT3)-mediated resistance, we synthesized and screened a series of synthetic deguelin-based compounds in terms of inhibition of colony formation, migration, and viability of non-small cell lung cancer (NSCLC) cells and toxicity to normal cells. Regulation of Hsp90 by the selected compound NCT-80 [5-methoxy-N-(3-methoxy-4-(2-(pyridin-3-yl)ethoxy)phenyl)-2,2-dimethyl-2H-chromene-6-carboxamide] was investigated by immunoprecipitation, drug affinity responsive target stability assay, binding experiments using ATP-agarose beads and biotinylated drug, and docking analysis. The antitumor, antimetastatic, and anti-CSC effects of NCT-80 were examined in vitro and in vivo using various assays such as MTT, colony formation, and migration assays and flow cytometric analysis and tumor xenograft models. Results: We demonstrated a distinct mechanism in which Hsp90 inhibitors that block N-terminal ATP-binding pocket causes transcriptional upregulation of Wnt ligands through Akt- and ERK-mediated activation of STAT3, resulting in NSCLC cell survival in an autocrine or paracrine manner. In addition, NCT-80 effectively reduced viability, colony formation, migration, and CSC-like phenotypes of NSCLC cells and their sublines with acquired resistance to anticancer drugs by inducing apoptosis and inhibiting epithelial-mesenchymal transition and the growth of NSCLC patient-derived xenograft tumors without overt toxicity. With regards to mechanism, NCT-80 directly bound to the C-terminal ATP-binding pocket of Hsp90, disrupting the interaction between Hsp90 and STAT3 and degrading STAT3 protein. Moreover, NCT-80 inhibited chemotherapy- and EGFR TKI-induced programmed cell death ligand 1 expression and potentiated the antitumor effect of chemotherapy in the LLC-Luc allograft model. Conclusions: These data indicate the potential of STAT3/Wnt signaling pathway as a target to overcome resistance to Hsp90 inhibitors and NCT-80 as a novel Hsp90 inhibitor that targets both CSCs and non-CSCs in NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias Pulmonares/metabolismo , Células Madre Neoplásicas/metabolismo , Factor de Transcripción STAT3/metabolismo , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Resistencia a Medicamentos , Humanos , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/citología
5.
Cell Death Discov ; 7(1): 354, 2021 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-34775489

RESUMEN

N-terminal HSP90 inhibitors in development have had issues arising from heat shock response (HSR) induction and off-target effects. We sought to investigate the capacity of NCT-58, a rationally-synthesized C-terminal HSP90 inhibitor, to kill trastuzumab-resistant HER2-positive breast cancer stem-like cells. NCT-58 does not induce the HSR due to its targeting of the C-terminal region and elicits anti-tumor activity via the simultaneous downregulation of HER family members as well as inhibition of Akt phosphorylation. NCT-58 kills the rapidly proliferating bulk tumor cells as well as the breast cancer stem-like population, coinciding with significant reductions in stem/progenitor markers and pluripotent transcription factors. NCT-58 treatment suppressed growth and angiogenesis in a trastuzumab-resistant xenograft model, concomitant with downregulation of ICD-HER2 and HSF-1/HSP70/HSP90. These findings warrant further investigation of NCT-58 to address trastuzumab resistance in heterogeneous HER2-positive cancers.

6.
Bioorg Med Chem Lett ; 45: 128134, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34044120

RESUMEN

A series of O-substituted analogs of the C-ring-truncated scaffold of deguelin designed as heat shock protein 90 (HSP90) C-terminal inhibitors were investigated as novel antitumor agents against human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Among the synthesized compounds, compound 37 displayed significant inhibition in both trastuzumab-sensitive and trastuzumab-resistant breast cancer cells with little cytotoxicity to normal cells. Mechanistic studies of compound 37 carried out by HSP90α C-terminal inhibitor screening, the induction of the heat shock response and downregulation of HSP90 client proteins indicated that the antitumor activity of 37 in breast cancer cells could be attributed to the destabilization and inactivation of HSP90 client proteins by the binding of 37 to the C-terminal domain of HSP90. A molecular docking study of compound 37 with a HSP90 homology model indicated that its S-isomer fit well in the ATP binding site of the C-terminal domain, forming key interactions.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Descubrimiento de Drogas , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Rotenona/análogos & derivados , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Simulación del Acoplamiento Molecular , Estructura Molecular , Rotenona/síntesis química , Rotenona/química , Rotenona/farmacología , Relación Estructura-Actividad
7.
Mol Cancer ; 19(1): 161, 2020 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-33218356

RESUMEN

Trastuzumab resistance in HER2-positive breast cancer is associated with a poorer prognosis. HSP90 is thought to play a major role in such resistance, but N-terminal inhibitors of this target have had little success. We sought to investigate the utility of NCT-547, a novel, rationally-designed C-terminal HSP90 inhibitor in the context of overcoming trastuzumab resistance. NCT-547 treatment significantly induced apoptosis without triggering the heat shock response (HSR), accompanied by caspase-3/- 7 activation in both trastuzumab-sensitive and -resistant cells. NCT-547 effectively promoted the degradation of full-length HER2 and truncated p95HER2, while also attenuating hetero-dimerization of HER2 family members. The impairment of cancer stem-like traits was observed with reductions in ALDH1 activity, the CD24low/CD44high subpopulation, and mammosphere formation in vitro and in vivo. NCT-547 was an effective inhibitor of tumor growth and angiogenesis, and no toxic outcomes were found in initial hepatic and renal analysis. Our findings suggest that NCT-547 may have applications in addressing trastuzumab resistance in HER2-positive breast cancer.


Asunto(s)
Antineoplásicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Trastuzumab/farmacología , Animales , Antineoplásicos/química , Antineoplásicos Inmunológicos/farmacología , Apoptosis , Biomarcadores de Tumor/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular , Femenino , Humanos , Ratones , Células Madre Neoplásicas , Dominios Proteicos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Bioorg Med Chem Lett ; 30(17): 127374, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738983

RESUMEN

A series of O-substituted analogues of the B,C-ring truncated scaffold of deguelin were designed as C-terminal inhibitors of heat shock protein 90 (HSP90) and investigated as novel antiproliferative agents against HER2-positive breast cancer. Among the synthesized compounds, compound 80 exhibited significant inhibition in both trastuzumab-sensitive and trastuzumab-resistant breast cancer cells, whereas compound 80 did not show any cytotoxicity in normal cells. Compound 80 markedly downregulated the expression of the major client proteins of HSP90 in both cell types, indicating that the cytotoxicity of 80 in breast cancer cells is attributed to the destabilization and inactivation of HSP90 client proteins and that HSP90 inhibition represents a promising strategy to overcome trastuzumab resistance. A molecular docking study of 80 with the homology model of a HSP90 homodimer showed that 80 fit nicely in the C-terminal domain with a higher electrostatic complementary score than that of ATP.


Asunto(s)
Antineoplásicos/química , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Rotenona/análogos & derivados , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Sitios de Unión , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Rotenona/química , Rotenona/metabolismo , Rotenona/farmacología , Relación Estructura-Actividad
9.
Bioorg Med Chem ; 27(7): 1370-1381, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30827868

RESUMEN

On the basis of deguelin, a series of the B,C-ring truncated surrogates with N-substituted amide linkers were investigated as HSP90 inhibitors. The structure activity relationship of the template was studied by incorporating various substitutions on the nitrogen of the amide linker and examining their HIF-1α inhibition. Among them, compound 57 showed potent HIF-1α inhibition and cytotoxicity in triple-negative breast cancer lines in a dose-dependent manner. Compound 57 downregulated expression and phosphorylation of major client proteins of HSP90 including AKT, ERK and STAT3, indicating that its antitumor activity was derived from the inhibition of HSP90 function. The molecular modeling of 57 demonstrated that 57 bound well to the C-terminal ATP-binding pocket in the open conformation of the hHSP90 homodimer with hydrogen bonding and pi-cation interactions. Overall, compound 57 is a potential antitumor agent for triple-negative breast cancer as a HSP90 C-terminal inhibitor.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Rotenona/análogos & derivados , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Rotenona/síntesis química , Rotenona/química , Rotenona/farmacología , Relación Estructura-Actividad
10.
Cancer Lett ; 447: 141-153, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30703411

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive heterogeneous disease with a divergent profile. It has an earlier tendency to form metastases and is associated with poor clinical outcomes due to the limited treatment options available. Heat-shock protein (HSP90) represents a potential treatment target as it promotes tumor progression and metastasis by modulating the maturation and stabilization of signal transduction proteins. We sought to investigate the efficacy of the C-terminal HSP90 inhibitor L80 on cell proliferation, breast cancer stem cell (BCSC)-like properties, tumor growth and metastasis. L80 suppressed cell viability and concomitantly inhibited AKT/MEK/ERK/JAK2/STAT3 signaling in TNBC cells but did not induce cytotoxicity in normal cells. L80 effectively targeted BCSC-like traits, together with significant reductions in the CD44high/CD24low-population, ALDH1 activity and mammosphere forming-ability. In support of the in vitro observations, L80 administration caused significant impairment in tumor growth, angiogenesis and distant metastases in an orthotopic allograft model with BCSC-enriched cells in vivo. These phenomena were associated with the suppression of BCSC-like characteristics and STAT3 dysfunction. Our findings highlight properties of the L80 compound that may be useful in suppressing metastatic TNBC.


Asunto(s)
Antineoplásicos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Metástasis de la Neoplasia/tratamiento farmacológico , Factor de Transcripción STAT3/antagonistas & inhibidores , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Neovascularización Patológica/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
11.
Sci Rep ; 8(1): 13924, 2018 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-30224681

RESUMEN

Despite the development of advanced therapeutic regimens such as molecular targeted therapy and immunotherapy, the 5-year survival of patients with lung cancer is still less than 20%, suggesting the need to develop additional treatment strategies. The molecular chaperone heat shock protein 90 (Hsp90) plays important roles in the maturation of oncogenic proteins and thus has been considered as an anticancer therapeutic target. Here we show the efficacy and biological mechanism of a Hsp90 inhibitor NCT-50, a novobiocin-deguelin analog hybridizing the pharmacophores of these known Hsp90 inhibitors. NCT-50 exhibited significant inhibitory effects on the viability and colony formation of non-small cell lung cancer (NSCLC) cells and those carrying resistance to chemotherapy. In contrast, NCT-50 showed minimal effects on the viability of normal cells. NCT-50 induced apoptosis in NSCLC cells, inhibited the expression and activity of several Hsp90 clients including hypoxia-inducible factor (HIF)-1α, and suppressed pro-angiogenic effects of NSCLC cells. Further biochemical and in silico studies revealed that NCT-50 downregulated Hsp90 function by interacting with the C-terminal ATP-binding pocket of Hsp90, leading to decrease in the interaction with Hsp90 client proteins. These results suggest the potential of NCT-50 as an anticancer Hsp90 inhibitor.


Asunto(s)
Antineoplásicos/síntesis química , Benzopiranos/síntesis química , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neoplasias Pulmonares/patología , Piridinas/síntesis química , Adenosina Trifosfato/metabolismo , Antineoplásicos/farmacología , Benzopiranos/farmacología , Sitios de Unión , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Concentración 50 Inhibidora , Neoplasias Pulmonares/metabolismo , Piridinas/farmacología
12.
Bioorg Med Chem ; 24(22): 6082-6093, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27745993

RESUMEN

Based on the lead compound L-80 (compound 2), a potent heat shock protein 90 (HSP90) inhibitor, a series of C-ring truncated deguelin analogs were designed, synthesized and evaluated for Hypoxia Inducible Factor-1α (HIF-1α) inhibition as a primary screening method. Their structure-activity relationship was investigated in a systematic manner by varying the A/B ring, linker and D/E ring, respectively. Among the synthesized inhibitors, compound 5 exhibited potent HIF-1α inhibition in a dose-dependent manner and significant antitumor activity in human non-small cell lung carcinoma (H1299), with better activities than L-80. It also inhibited in vitro hypoxia-mediated angiogenic processes in human retinal microvascular endothelial cells (HRMEC). The docking study of 5 showed a similar binding mode as L-80: it occupied the C-terminal ATP-binding pocket of HSP90, indicating that the anticancer and antiangiogenic activities of 5 were derived from HIF-1α destabilization by inhibiting the C-terminal ATP-binding site of hHSP90.


Asunto(s)
Antineoplásicos/farmacología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Neovascularización Patológica/tratamiento farmacológico , Rotenona/análogos & derivados , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Modelos Moleculares , Estructura Molecular , Neovascularización Patológica/patología , Rotenona/síntesis química , Rotenona/química , Rotenona/farmacología , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...